BeneluxSpoor.net forum
Vraag en antwoord => (Her)beginners => Topic gestart door: Nspoorfanaat op 13 October 2007, 15:33:22
-
Ik wil langs mijn baan een traject bouwen voor mijn ice3
en thalys.
Het heeft geen haast want ik heb het spul wel maar
ben nog niet begonnen.
De vraag is: als ik de ice3 en thalys op goede verhoudingstopsnelheid wil laten rijden, is er dan zoiets als komspoorrails, die die net als in het eggie wat scheef liggen in de bocht. Dat zou ontsporen tegengaan, maar ik ben het nergens tegengekomen.
PS ik heb Fleischmann piccolo, minitrix en Kato N
verder wil ik graag weten of flexrails van atlas combineerbaar is met mijn piccolo rails. Ik heb gelezen over code 55 en 80, maar ben het spoor bijster
-
komspoorrails = verkanting
Verkanting kan jezelf in je baan toepassen.
Google of zoek op dit forum eens op verkanting...
mvg,
Sander
-
MOROP NEM-normblad 114
-
Nederlandse versie:
http://nemnormen.zoeffie.nl/NEMreeks100.pdf (http://nemnormen.zoeffie.nl/NEMreeks100.pdf)
Veel andere zaken, zie NEM-normen in de menu-balk aan de linkerkant hier op Beneluxspoor.
Groetjes,
Dave
-
Om ontsporen te voorkomen is verkanten niet nodig, het ziet er alleen wat fraaier uit. Veel belangrijker is het toepassen van geleidelijke overgangen van de rechte rails naar de boog (en terug).
Los daarvan, hoeveel ruimte heb je ter beschikking? 300 km/h (op schaal 0,5 m/s) wordt alleen op nagenoeg rechte trajecten bereikt, je moet wel een flinke lengte hebben om een trein een aantal seconden (!) op deze snelheid te kunnen zien en onvermijdelijke bogen moeten een grote radius hebben.
-
Verkanting werkt wel degelijk om treinen met hogere snelheid door de bocht te laten gaan, doordat ze in de bocht gedrukt worden, onstporen ze dus niet, tot minder snel.
Probeer zelf maar, als je heel hard fietst, in een keer een ruk aan het stuur te geven, of gaan overhellen. (op eigen risico ;D)
En die 300 rijden ze ook door bochten hoor, dus bochten zijn prima te doen, alleen wel heel flauw en goed verkant ;)
-
Verkanteling staat ook op een modelbaan heel mooi en kan wel degelijk een functie hebben mits voorzien van een juiste overgangsboog. Verkantel echter niet te veel ivm het omtrekken van langere treinen.
-
@ koos.
Hoe kom jij van 300 km/h naar 0,5 m/s ?? is dit niet erg traag?
Richard
-
@ koos.
Hoe kom jij van 300 km/h naar 0,5 m/s ?? is dit niet erg traag?
300 / 3.6 = 83.3
83.3 / 0.5 = 166.6
Ik gok dat hij in schaal N rijdt :).
-
oke dat eerste kan ik volgen. maar waarom delen door een half? Ik rijd zelf ook N en worstel hier ook mee! kun je het me eens uitleggen?
-
Luister is,
Schaal is:160
Betekend alles delen door 160
Dus 300 km/u /160 = 1.875 km/u
1.875 / 3.6 = 0.52 m/s dat zou je schaalsnelheid moeten zijn.
-
Oke op die manier! Nu is het me helemaal duidelijk. Mijn dank hiervoor.
Richard
-
Dacht even me vergist te hebben, de schaalsnelheid hoef ik verder niet uit te leggen.
Wat het verkanten betreft; in het traject Keulen-Frankfurt komt een boog voor met een radius van 3320 m, de verkanting bedraagt 170 mm (bron Wikipedia). In schaal N zou dat een radius van 20 m geven met een verkanting van 1mm! Bij een modelbaan moeten compromissen worden getroffen, hoever ga je daarbij? Vandaar mij vraag hoeveel ruimte er ter beschikking staat. Ik denk dat bij deze snelheid een boogstraal van 1 m toch wel het minimum is met een verkanting van maximaal 2 mm.
-
Hallo Koos en de anderen,
Met het advies om in schaal N een verkanting van 2 mm toe te passen heb ik enige moeite.
In het grootbedrijf (niet HSL) geldt de regel dat de verkanting eigenlijk niet groter mag zijn dan 10 %. Er zijn enkele uitzonderingen tot 17 cm (op 150 cm*) bijv bij Harderwijk. Je moet er rekening mee houden dat een trein in een boog met verkanting stil blijft staan en dan niet omvalt niet waar. Vandaar! Het zwaartepunt van een railvoertuig moet altijd tussen de spoorstaven blijven vallen. Ik denk dan ook dat bij de HSL er geen verandering van dit maximum heeft plaatsgevonden.
De spoorwijdte is bij normaalspoor 1435 mm maar de spoorafstand is 1500 mm (hoh spoorstaven).
Kortom bij schaal N is een verkanting van 1 mm op 9 mm toch al ruim bemeten.
(In h0 dus 1,7 mm op 16,5 mm).
Ik heb deze kennis al ruim 45 jaar geleden opgedaan en kan dus gedateerd zijn. :)
mvg
Wout Jansen
-
Wat het verkanten betreft; in het traject Keulen-Frankfurt komt een boog voor met een radius van 3320 m, de verkanting bedraagt 170 mm (bron Wikipedia). In schaal N zou dat een radius van 20 m geven met een verkanting van 1mm!
Als ik dat terugreken rijden ze dus bijna 250 km/h door die boog. Maar in model hoef je de verkanting niet volgens de schaalverhouding weer te geven.
De verkanting is afhankelijk van het kwadraat van de snelheid. Aangezien in model de snelheid volgens de schaalverhouding gereduceerd wordt zal de technische noodzaak van verkanting snel kleiner worden.
Een voorbeeld:
De TGV rijdt 300 km/h door bogen van 5000 meter. Om de zaak precies in balans te houden moet de verkanting ongeveer 21 cm zijn.
Reken je dat volgens de schaalverhouding terug dan krijg je in H0 een verkanting van 210/87 = 2,5 mm bij een boogstraal van 57 meter! Bij zo'n boogstraal lijkt me dat geen gezicht.
Ga je in schaal H0 berekenen wat je in zo'n boog technisch nodig hebt dan kom ik op een verkanting van 0,027 mm. Dat is zo weinig dat je dus beter niks kan doen.
-
@Wout,
Jouw kennis geldt nog steeds! In het normblad 114 wordt voor N 0,6 mm genoemd dus 1 mm is inderdaad al ruim.
@Klaas
Puur om mijn nieuwsgierigheid te bevredigen, hoe bereken je de verkanting uit de snelheid? Niet dat ik van plan ben verkanting te realiseren!
-
@Klaas
Puur om mijn nieuwsgierigheid te bevredigen, hoe bereken je de verkanting uit de snelheid? Niet dat ik van plan ben verkanting te realiseren!
Toepassen wat je bij de natuurkundeles hebt geleerd. ;D
Om een voertuig door de boog te krijgen moet je er een horizontale versnelling aan geven die gericht is naar het middelpunt van de boog. Die versnelling bereken je met de formule:
a = v2/R, waarin: a = versnelling, v is snelheid in m/s, r is boogstraal in meters
a deel je door 9,82, dat is de (verticaal gerichte) versnelling van de zwaartekracht.
Het getal dat je dan krijgt is het hellingpercentage van de verkanting, dat vermenigvuldig je met de spoorbreedte, dat is dus de hoh afstand tussen de spoorstaven, en dan krijg je het hoogteverschil tussen de spoorstaven.
Voorbeeld grootbedrijf:
snelheid 120 km/h, dat is dus 33,33 m/s
boogstraal 1000 m
a = v2/R = 33,332/1000 = 1,111
delen door 9,82 geeft 0,113
vermenigvuldigen met 1,5 m geeft een verkanting van 0,1697 m, dus zeg maar 17 cm.
Voorbeeld model:
schaalsnelheid is 120km/h = 33,33 m/s in het groot, dat is 0,383 m/s in H0.
boogstraal 60 cm = 0,6 m.
a = 0,3832/0,6 = 0,24466
delen door 9,82 geeft 0,0249
Dat vermenigvuldigen met 17,5 mm geeft 0,436 mm verkanting.
Let er op dat je altijd consequent met meters en secondes moet werken, anders kom je verkeerd uit. En het werkt ook alleen maar goed met verkantingen tot 10% omdat je met de sinus van de verkantingshelling werkt terwijl je eigenlijk met de tangens moet werken. Maar voor kleine hoeken zijn sinus een tangens vrijwel gelijk, dus de fout die je maakt is verwaarloosbaar.
-
@Klaas
Hartelijk dank voor de uitleg. Mijn natuurkundelessen liggen zo'n 50 jaar achter me, dat zit er dus niet meer zo in!
-
Dat vermenigvuldigen met 17,5 mm
16,5 toch ???
-
a deel je door 9,82, dat is de (verticaal gerichte) versnelling van de zwaartekracht.
Grappig, hier (in het oosten 's lands) werd ons geleerd dat de zwaarteversnelling 9,81 is. ;D
-
Hier word mij dat ook geleerd ;D
-
16,5 toch ???
Bij de verkanting reken je met de spoorbreedte, die 16,5 mm is de spoorwijdte.
Lees mijn verhaal nog eens heel aandachtig door.
-
Grappig, hier (in het oosten 's lands) werd ons geleerd dat de zwaarteversnelling 9,81 is. ;D
Maar Klaas zit in het westen van het land, daar waar de zee is. De zee heeft altijd een hoge aantrekkingskracht op de mens gehad. Bovendien ligt het land lager dan in het oosten en kun je dus harder vallen...
-
Ach ja, het werkelijk verhaal is dat ik altijd twijfel of het nou 9,81 of 9,82 is. Volgens mij ligt de waarheid ergens in het midden. Bovendien maakt het op het eindresultaat niet zo bar veel uit. Of de berekende verkanting nou uitkomt op 0,42 of 0,43 mm, who cares?
-
Hallo,
Nu even wat over een expirementje met verkanting in de trein.(Off topic..)
Als je een plastic bekertje met water op het tafeltje zet bij het raam in de trein, kan je zien hoe verkanting werkt.
In theorie moet bij de juiste verkanting en wanneer de trein de snelheid rijdt, waar de verkanting voor berekend is, dan zal de waterspiegel in het bekertje evenwijdig aan het tafelblad blijven, ook als de trein door een boog bij Harderwijk (of een andere krappe boog) rijdt.
In de praktijk is het anders... ;) Ik bedoel niet wat er gebeurt als hij stopt in zo'n boog.
Groeten,Peter
-
Yep, en ik weet wat er met je volle (van huis meegenomen) beker koffie gebeurt als de trein wel vlak voor Harderwijk moet stoppen. De noodremming had trouwens het meeste werk al gedaan >:(.
Maar even on-toppic. Verkanting is dus echt niet nodig. Ik vind het enkel een fraai gezicht. Moet eerlijk bekennen dat ik nooit iets berekent heb. In de overgangsboog begon ik gewoon met een strookje papier, dan nog één, enz. Heb dit ooit eens gelezen in een boekje dat 'de Nederlandse modelbaan' heet, zo'n klein boekje uit een serie. Ligt nog ergens op zolder.
Op z'n 'top' lagen er onder de boog drie stukjes van m'n vrouw gejatte tekenkarton of zoiets. Ik kwam net niet aan de millimeter, en toch was het resultaat fraai, vooral bij langere modellen en treinen.
Ben zeker van plan dit ook toe te passen op de baan die in m'n hooft vorm begint te krijgen.